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Abstract 

Rationale and Objectives: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time 

consuming and challenging to quantify on computed tomography. The purpose of this study was to 

evaluate the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes 

associated with COVID-19 pneumonia.  

Materials and Methods: A previously trained dCNN was tested on an external validation cohort of 241 

patients who presented to the emergency department and received a chest computed tomography 

scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of 

airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently 

evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw 

opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes.  

Results: Interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). 

Probability of each outcome behaved as a logistic function of the opacity scoring (25% ICU admission at 

score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). Length of hospitalization, ICU 

stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, 

respectively).  

Conclusion: The tested dCNN was highly predictive of inpatient outcomes, performs at a near expert 

level, and provides added value for clinicians in terms of prognostication and disease severity.   
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Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has created a unique challenge for medical 

personnel worldwide by becoming quickly pervasive. Many studies have identified the signs found and 

usefulness of chest computed tomography (CT) imaging (or even abdominopelvic lung base analysis) for 

triage of these patients with potential COVID-19 pneumonia, particularly to identify diagnostic and 

prognostic factors.[1-4] Therefore, the use of artificial intelligence (AI) deep learning models to 

prognosticate from CT images has been identified from the beginning of the pandemic as a potential 

way to expedite the triage process, improve prognostication, and guideline utilization of resources.[1, 

5]The use of AI to prognosticate clinical course of COVID-19 pneumonia patients from subjective 

imaging features is challenging. One solution is the use of scoring systems, such as severity scoring, as 

standardization and efficiency are increased by protocol, resulting in higher-quality, evidence-based 

decision making by clinicians. However, manual segment severity scoring is a time-consuming task which 

is not currently standard of care. Thus, utilizing AI severity scoring may be helpful in meeting the 

challenge of practical, reproducible triage of COVID-19 patients by identifying patients at high risk for 

morbidity and mortality.[6]  

While there is a relative paucity of studies utilizing severity scoring during the task of COVID-19 CT image 

interpretation, several studies have demonstrated the efficacy of scoring images with severity scoring 

methods.[6-9] Lessman, et. al. reported moderate agreement for score determination by AI methods 

when in comparison to expert radiologists’ interpretation; with high area under curve (AUC), sensitivity, 

and specificity (internal set: 0.95, 85.7%, and 89.8% and external set: 0.88, 82.0%, and 80.5%, 

respectively).[6] Goncharov, et. al. demonstrated an AUC of 0.95 and severity model correlation 0.98 for 

the identification of COVID-19 pneumonia patients[7]. Lassau, et.al calculated severity scores based on 

clinical factors and then recalculated the scored based on the combination of clinical factors and imaging 

interpretation by AI. The AI-assisted method of score calculation outperformed the previously 

                  



determined score in terms of prognostic ability.[8] Finally, Mader et al. determined that severity scoring 

differentially predicts patients with severe disease from non-severe.[10] 

However, methods and image sources vary between studies and may be prone to bias and overfitting 

from use of identical or poorly annotated images from publicly available datasets. Furthermore, few 

seldom test their methods against a real-world contiguous patient cohort with well-defined 

outcomes.[1] Therefore, the purpose of this study is to analyze the efficacy of a novel deep learning 

model in determining prognostic value of an AI severity scoring algorithm.  

 

Methods 

Study population, clinical information, and imaging data acquisition 

The protocol of this retrospective study was approved by the local Institutional Review Board and the 

need for informed consent was waived. Patient data was collected and anonymized in compliance with 

HIPAA and institutional protocols to protect patient privacy. A total of 241 patients were enrolled in this 

study, 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction 

(PCR) positive and 158 SARS-CoV-2 PCR negative, who underwent a chest CT with or without contrast 

from March 2020 to February 2021. Data collected included demographics, clinical comorbidities, and 

outcome variables which included hospitalization, intensive care unit (ICU) admission, intubation, and 

mortality. A preliminary patient list was collected through billing code search using COVID-19 testing and 

chest CT identifiers. Data collection was performed by chart review and compiled in a de-identified 

encrypted document. Imaging data from chest CT scans with 1 mm slice thickness including non-contrast 

and iodinated contrast enhanced studies (mAs and kVp selected according to patients` body mass index) 

were acquired from Somatom Force and Naeotom Alpha CT scanners (Siemens Healthineers, Forcheim, 

Germany). Archived data was then exported from the picture archiving and communication system and 

                  



uploaded to the AI interface (AI-RAD companion, Siemens Healthineeers) where the algorithm was 

executed and the results recorded. 

 

Study Design 

A single-institution retrospective case-control study was performed. Inclusion criteria included patients 

>18 years old who presented to the emergency department, received both a COVID-19 test and a chest 

CT within 14 days, and had sufficient same-institution follow-up for outcomes analysis (1 month post 

discharge from emergency department (ED) or inpatient hospitalization). Controls were selected based 

on an eligible CT scan with a negative SARS-CoV-2 PCR in the stated timeframe. These controls were 

neither age nor sex matched. Exclusion criteria included prior pulmonary surgical history, viral 

pneumonia other than COVID-19, and excessive artifact on chest CT.  

The gold standard used was an expert-derived airspace opacity score. Three cardiothoracic trained 

radiologists comprised the expert determination of airspace opacities as given by Bernheim et al.[11] 

For each lobe, the disease extent was judged to be one of the following categories: (0) the lobe is not 

affected; (1) 1%–25%; (2) 25%–50%; (3) 50%–75%; and (4) 75%–100%. The scores for each of the five 

lobes were summed to calculate the total severity score, resulting in a total score range from 0 to 20. A 

0 indicates that none of the lobes are involved and 20 indicates that all five lobes are severely affected. 

The primary endpoints were interobserver agreement between AI and the radiologists for the 

determination of COVID-19 extent as well as the predictive capability of airspace opacity scoring and 

other AI measurements for the diagnosis of COVID-19 pneumonia.  

 

Convolutional Neural Network architecture and outputs.  

The deep convolutional neural network (dCNN) algorithm has been previously described in Chaganti et 

al.[12] Briefly, the original dCNN was trained on 901 chest CT scans (431 COVID-19, 174 viral pneumonia, 

                  



and 296 with interstitial lung disease) with a validation cohort of 200 patients (100 COVID-19 and 100 

control). The general architecture utilized a preprocessing step with deep-image-to-image lung 

segmentation using the carina as a landmark with alignment, then a DenseUNet architecture for feature 

(ground glass opacity, etc.) extraction, subsequently followed by segmentation and global classification. 

Please see appendix E1 in Chaganti et al. for a detailed description of the neural network architecture, 

training, and measures such as loss function.  

 

Statistical Analysis  

A power calculation optimized for outcomes assuming at least a 10% prevalence of each event required 

>150 patients for a standardized power of 0.8. Post-hoc, 241 patients conferred a power of 0.965 for 

simple logistic regression analysis (Figure S1). Aggregate demographics and clinical risk factors analysis 

was performed using SARS-CoV-2 PCR positivity as the stratifying variable. Continuous variables were 

assessed for normality and reported as medians plus interquartile ranges. Categorical variables were 

reported with count and frequency as percent.  

Primarily, interobserver agreement for quantitative scoring was assessed using intraclass correlation 

coefficients (ICC) with 2-way mixed effects, single rater (k), and absolute agreement. Adjusted linear 

model R2 and p-values were also reported for assessment of linearity of results. Cohen’s kappa was 

reported with confidence interval as a secondary measure of categorical agreement. For categorical 

agreement, any airspace opacity was counted as a positive result, and no airspace opacities were 

defined as the only negative result and only used in the context of COVID-19 positive patients to focus 

on specific performance on COVID-19 patients. Diagnostic parameters were reported using confidence 

intervals constructed using the Clopper-Pearson method.  

Multivariate modelling for COVID-19 diagnosis was performed using multiple logistic regression. Briefly, 

backwards stepwise logistic regression was performed on all AI generated measurements until all 

                  



retained model elements were significant (p < 0.05) in the model. The model with the lowest Akaike 

information criterion (AIC) was selected among the models with significant elements.  Multivariate 

modelling of outcomes was performed using the variables deemed diagnostic for COVID-19 in the 

previous analysis. Optimal airspace opacity score cutoffs were empirically selected using a bootstrapping 

approach with 200 repetitions of 1:1 COVID-19 positive/negative stratification sampling were used by 

maximization of the bootstrapped accuracy metric. Figure S2 demonstrates the empiric selection 

process. Time-derived outcome variables were analyzed by binning into quintiles to improve reader 

interpretability. Differences between each quintile were assessed using one-way ANOVA. Means and 

standard errors were reported for continuous variables. All statistical analysis was performed in R v 

3.6.3.  

 

 

 

 

  

                  



Results 

In this study 93 patients (38.5%) were positive for SARS-CoV-2. The median age of those with and 

without COVID-19 was 59 (IQR 45 – 71) and 62 (IQR 47 – 69), respectively. A greater proportion of those 

with COVID-19 were male in comparison to controls (61.5% vs 51.9).  The median time between 

nasopharyngeal swab and imaging was 3 days for SARS-CoV-2 positive patients and 0 days for SARS-CoV-

2 negative patients. Patients positive for SARS-CoV-2 were more likely to be Black or Hispanic (57.0%, 

2.3%) than SARS-CoV-2 negative patients (37.7%, 0%). In comparison to control patients, SARS-CoV-2 

positive patients were more frequently smokers (93.4% vs 48.8%), more likely to have hypertension 

(65.9% vs 49.2%), and more likely to be diabetic (37.6% vs 23.8) (Table 1).  

 

The AI dashboard, the provided summary of the algorithm output, demonstrates highlighted airspace 

opacities in the axial view with the possibility to reconstruct the affected tissue in three dimensions. The 

results dashboard provides readers with information regarding the extent of the airspace opacities as 

broken down by lobe. Results include opacity scores, lung volumes, mean and standard deviation of the 

Hounsfield units for affected lungs, volumes of affected lung tissue and high opacity measurements 

(Figure 1).  

 

The overall correlation between observer estimates of severity score  was 0.827 (95% CI 0.7–1 - 0.891). 

The expert and AI had a high rate of agreement with ICC of 0.892 (95% CI 0.834-0.930), p <0.001. The 

Adjusted R2 for explanation of model variance was 0.69, p < 0.001. (Figure 2A).  Overall, The accuracy of 

the dCNN was 0.828 (95% CI 0.751 - 0.905) and sensitivity was 0.914 (95% CI 0.830 - 0.965). (Figure 2B).  

 

Using the measurements given in the AI dashboard, a best fit multivariate model consisting of total 

opacity volume (cm3), high opacity volume (cm3), standard deviation of opacity Hounsfield units, and 

                  



total standard deviation of all Hounsfield units gives an AUC of 0.805 (95% CI 0.745 – 0.862) for the 

diagnosis of COVID-19. The AUC for individual predictors of the model range from 0.728 to 0.561. All 

variable coefficients were significant in the multiple logistic regression model (P < 0.05). (Figure 3). The 

same combination of variables predicts need for inpatient hospitalization (AUC = 0.810) and ICU 

admission, intubation, and mortality at AUCs ranging from 0.666 - 0.683. The trend of accuracy was 

highest for events earliest in each patient’s time course. (Figure 4).  

 

In regards to threshold determination, AI Airspace opacity ≥13 was accurate (0.777 95%; CI 0.724 - 

0.829) and specific (0.873; 95% CI 0.822 - 0.913) for mortality. AI airspace opacity ≤13 had a high NPV for 

death (0.946; 95% CI 0.915 - 0.977). Accuracy of AI airspace opacity ≥8 for hospitalization was 0.777 

(95% CI 0.724 – 0.829). Accuracy of AI airspace opacity ≥ 9 for ICU admission was 0.744 (95% CI 0.680 - 

0.799). Accuracy of AI airspace opacity ≥12 for intubation was 0.839 (95% CI 0.793 - 0.885) (Table 2).  

Using the threshold values within the logistic model probabilities, there is a 25% risk of respective 

outcomes at an airspace score of 6 (Hospitalization), 13 (ICU Admission], 16 (Intubation) and ≥ 20 

(Mortality). Significant increases in probability of mortality does not occur until AI Airspace opacity >10. 

A maximum score of 20 conferred an 87.5% probability of hospitalization, 50% probability of ICU 

admission, 37.5% probability of intubation, and about a 25% probability of mortality. The points of most 

uncertainty came at scores > 15, suggesting other risk factors are increasingly important at these upper 

ranges (Figure 5).  

  

The AI airspace opacity scores predict time-to-event and inpatient durations, with the mean 

hospitalization duration, ICU duration, and intubation duration being associated with increased AI 

airspace opacity scores. (P = 0.032, 0.039, 0.036, respectively). The time from hospital admission to ICU 

admission was not significantly associated with AI airspace opacity scores (P = 0.159) (Figure 6).    

                  



Discussion 

 The purpose of this study was to test a previously trained deep convolutional neural network for 

diagnostic and prognostic purposes in patients with COVID-19 pneumonia as seen on chest CT. A total of 

241 patients (93 COVID-19 positive) were evaluated by the dCNN in this external testing cohort design. 

The AI algorithm was highly accurate compared to attending radiologists with ICCs approaching human-

level agreement. Several key interpretable outputs were derived including opacity volumes, 

parenchymal-opacity ratios, and other 2nd order statistics. When put together into a standardized 

scoring system, several cutoffs were identified that process in a stepwise fashion in terms of severity. 

Lastly, both probabilities of inpatient outcomes and time-to-events behaved as a function of the 

airspace opacity scoring system, establishing expected prognostic gradients that may influence patient 

care.   

It is critical to understand the accuracy of expert observers in the diagnosis of COVID-19 

pneumonia from chest CT, as the gold standard used in this study was the expert quantification of 

airspace severity. Baseline expert accuracy in comparison to PCR surpasses 90% for the diagnosis of 

COVID-19 pneumonia. The ICC for expert-AI quantitative severity scoring represented “excellent” 

agreement. Overall, AI accuracy for patients with COVID-19 by positive PCR was high for identifying 

airspace opacities related to COVID-19 lesions. However, the correlation coefficient in this external 

validation cohort was mildly less than the previously published training data for the neural network.[12] 

While the focus of this study is on AI severity scoring, multivariate modelling of AI segmented 

measurements has an advantage over a scoring heuristic for the diagnosis of COVID-19 pneumonia. [13, 

14] A multivariate model consisting of opacity volume, “high opacity” volume, and the standard 

deviation of both opacity Hounsfield units and total Hounsfield units provides an AUC of 0.805, greater 

than the sum of its parts or the opacity scoring system. Expert measurement of opacity volumes and 

standard deviations are not feasible, reflecting a possible advantage of using AI systems in the 

                  



prediction of COVID-19 pneumonia. Indeed, some radiomic studies suggest the quantitative 

parenchymal involvement to be important indicators of severe outcomes.[15-17] The loss of accuracy 

from the severity scoring system can be attributed to the trade of interpretability for accuracy in any 

scaled heuristic.[18] 

Further clinical utility can be derived from the prediction of outcomes from airspace severity 

scoring. Quantitative AI airspace values readily predict inpatient hospitalization with reasonable 

accuracy, providing immediate clinical utility from the emergency department. More advanced 

outcomes (ICU admission, Intubation, and mortality) had predictions which were less strong, likely 

related to the multifactorial risk factors for each outcome. Certainly, already verified risk factors such as 

age, immunosuppression, BMI, and sex contribute to the overall predictive value of the imaging factors 

to a large degree in late inpatient clinical outcomes. 

The presence of “large” or “extensive” airspace opacities on chest imaging often evokes a 

negative reaction for poor prognosis among physicians caring for COVID-19 patients. However, the 

actual relationship of the quantitative extent of the airspace opacities and inpatient outcomes is poorly 

understood.[18] Certainly, radiologists may be able to segment airspace opacities by hand to provide 

extra clinical value, but this is a time intensive and laborious process which presents difficulty in the 

setting of increased chest imaging volumes during the COVID-19 pandemic.[19] Therefore, the 

introduction of an AI algorithm that would automatically segment the airspace opacities and provide a 

numeric, interpretable score could add value to the prognostication of COVID-19 pneumonia and change 

clinical management as patients progress down the COVID-19 treatment protocol.[20] Several such 

algorithms have been proposed with ICCs above the 90th percentile, each deriving value from individual 

lobar involvement.[21, 22] Still, a main challenge with expert-derived approaches include interobserver 

variation, which is partially rectified using a standardized AI approach.[23] 

                  



Comparison of predictive ability with the literature at large is a challenging task due to the 

heterogeneity of methods, preponderance of public dataset usage and transfer learning, and a risk of 

bias.[1] Fewer studies still have investigated an interpretable AI severity score from chest CT for both 

diagnosis and prognosis, but among those with similar aims the correlation coefficients are usually high 

between the experts and AI (0.87 - 0.97).[7, 24, 25] Prognostication often falls somewhat less accurate 

with AUCs between 0.75 and 0.90 reported.[26, 27] Univariate severity score AUCs in this range should 

be expected as other clinical variables (age, immunosuppression, etc.) contribute to disease progression 

and mortality in patients with COVID-19. A recent study found AUCs of 0.70 - 0.77 for inpatient 

outcomes by use of deep learning, which corroborates with our results.[28] It may be possible to 

achieve higher AUCs using radiologists supervised transfer learning.[29] It is likely that the univariate 

prediction strength of current AI methods lies within this range, but we suggest that our study stands 

out in this cohort due to the use of interpretable AI derived classification schemes.  

Empirically derived opacity score thresholds improve on the accuracy and predictive ability of 

COVID-19-related inpatient outcomes.[12, 30, 31] Many clinicians and patients are concerned about the 

next large decision points in COVID-19 clinical care, and airspace opacity scoring accurately 

prognosticates patient risk with negative predictive values > 90%; below 8 for hospitalization, below 9 

for ICU admission, below 12 for intubation, and below 13 for death. For a patient with an airspace 

severity score of 2, 5, or 10, a physician could relate that the probability of death to be low at <10%. 

Conversely, for a hospitalized patient with an airspace opacity score of 17 and approaching escalation of 

care, a physician could quote upwards of 25% risk of intubation and 20% all-comers mortality when 

discussing goals of care. Furthermore, AI airspace opacity scoring can inform clinicians, patients, and 

hospital systems of length of stay and duration of high-level of care including invasive ventilation 

duration and ICU bed occupancy. Bracketing airspace opacity into quintiles demonstrates a clear upward 

trend in hospitalization duration, ICU duration, and intubation duration as a function of severity. 

                  



Physicians could once again counsel a patient with a score of 15 and approaching intubation to expect 

an invasive ventilation duration of 10 days on average, albeit with a large degree of variation. 

CT scans are obtained at other points in admission besides the initial encounter stages and with other 

possible viral pathologies. While the strategy employed in this study utilizes a cross-sectional time point 

(emergency department admission predicated around SARS-CoV-2 PCR testing), there is a lack of 

information on if follow-up scores would predict morbidity and mortality as anticipated. The authors 

find likely that a change in clinical situation should result in a differential rate of outcomes, but there is 

dearth of follow-up CT scans during hospital admission. At the present time we are unable to conclude if 

and how the severity score predictions would change over the course of the admission, and instead 

recommend interpretation of prognostics in the setting of early workup of disease. Regarding other 

causes of atypical pneumonia, CT has been well described in the evaluations of other viral 

pneumonias.[32, 33] Various deep learning algorithms have attempted to differentiate between COVID-

19 and other viral pneumonias; however, the authors argue that with widespread SARS-CoV-2 testing 

availability this is less of a concern.[25]  Future study should investigate patients who had subsequent 

cross-sectional imaging during the hospital course and assess for changes in prognostic value. 

Limitations 

Limitations of this study include the single institution, retrospective nature of this study spanning 

multiple iterations of COVID-19 waves, vaccines, strains, and best practices. There is no current data to 

suggest how clinicians might approach this potential confounding aspect (i.e., radiologic findings of the 

Delta vs Omicron variant, vaccinated vs non-vaccinated vs booster received, etc). Additionally, this study 

was not powered to evaluate concurrent demographic and comorbidities as risk factors or effect 

modifiers as those were considered secondary endpoints. Further study is needed to develop more 

accurate risk modelling in the context of previously identified demographic and clinical variables. The 

patients enrolled in this study are also subject to selection bias by the criteria of having received a chest 

                  



CT upon presentation. Patients who receive a CT scan in the ED more likely represent a population with 

more severe presenting illness, which may inflate the average airspace opacity score among COVID-19 

positive patients. Severe outcomes in the COVID-19 group were sparse. A larger multi-institutional 

cohort is needed with more outcomes, for which this study will serve as the basis for a second power 

analysis.  

Importantly, interpreting airspace opacities in the context of COVID-19 patients is murky, as the 

type of airspace opacity is not discriminated against by the AI program. For instance – ground-glass 

opacities, “tree-in-bud” pattern, and patchy consolidation is found in many patients without pulmonary 

disease or in non-COVID-19 viral pneumonia, but would count as a positive airspace opacity in patients 

with or without COVID-19 in this study.[2, 3, 34]. Certain systems have been invented to classify COVID 

vs non-COVID pneumonia, but at the time of this article this is still an evolving science. A best practice 

would include performing a COVID-19 test before cross-sectional imaging to clarify pre-test 

probability.[32] 

 

Conclusions 

The use of AI segmented quantitative airspace severity scoring is an accurate diagnostic and prognostic 

tool for COVID-19. The AI algorithm adequately quantifies burden of disease in COVID-19 patients and 

can provide a service which would otherwise be too time consuming for radiologists and clinicians. The 

AI scoring output is also easily interpretable, explaining the outputs of a convolutional neural network 

with relatively little previous knowledge required. Extra value is also provided to clinicians on the risk of 

progression of disease to their patients, which may change management and influence goals of care 

discussion. Further study will focus on multivariate predictive outcomes analysis with less emphasis on 

interobserver agreement. 
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Table and Figure Legends  
 
Table 1. Demographics and clinical comorbidities of patients enrolled in this study stratified by SARS-

CoV-2 nasopharyngeal swab PCR results. 

 

Figure 1. Artificial Intelligence dashboard for automated evaluation of chest computed tomography for 

COVID-19. A. Axial view of lung fields with highlighted opacities segmented by neural network 

algorithm. B. Three-dimensional Image reconstruction of lungs with rending of involved airspace 

opacities. C. Parameters involved with diagnosis of COVID-19 by AI.  

 

Figure 2. Interobserver agreement between expert and AI opacity scores in patients who were positive 

for SARS-CoV-2 by PCR. A. Quantitative comparison of opacity score. B. Qualitative assessment for 

detection of any airspace opacities. PPV = positive predictive value, NPV = negative predictive value. 

 

Figure 3. AI-segmented imaging features for use in prediction of COVID-19 status. A. Multivariate 

imaging model consisting of total opacity volume (cm3), high opacity volume (cm3), standard deviation of 

opacity Hounsfield units, and total standard deviation of all Hounsfield units. All variables were 

significant in multiple logistic regression model (P < 0.05). B. Individual features used in the multivariate 

model and their individual diagnostic performance for COVID-19 diagnosis. Opacity volume, followed by 

high opacity volume, had the largest predictive power for COVID-19 diagnosis. AUC = area under curve, 

SD = standard deviation, HU = Hounsfield units 

 

Figure 4.  Multivariate logistic regression modelling of outcomes used in this study. A combination of 

variables (Opacity Volume, High Opacity Volume, SD Opacity HU, SD Total HU) derived from significant 

predictors of COVID-19 status predict hospitalization, ICU admission, intubation and death.   

                  



ICU = intensive care unit, AUC = area under curve.  

 

Table 2. Diagnostic parameters of the most accurate thresholds for inpatient outcomes. AI Airspace 

score thresholds have a high specificity and NPV for identifying patients at risk of morbidity and 

mortality. PPV = positive predictive value, NPV = negative predictive value. 

 

Figure 5. Probability of inpatient outcomes among as a logistic function of AI opacity score. The 

probability of an inpatient event follows an exponential function.   

 

Figure 6. Time to event and inpatient duration analysis among hospitalized COVID-19 patients using 

airspace opacity score quintiles with reported means and standard errors. Mean hospitalization duration 

(A), ICU duration (B), and intubation (D) duration were associated with increased AI airspace opacity 

scores. Time from hospital admission to ICU admission (C) was not significantly associated with AI 

airspace opacity scores.  ANOVA = analysis of variance, Hosp = hospitalization, ICU = intensive care unit 
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Table 1. Demographics and clinical comorbidities of patients enrolled in this study stratified by SARS-

CoV-2 nasopharyngeal swab PCR results. 

N = 241 SARS-CoV-2 
Positive (N = 93) 

 SARS-CoV-2 
Negative (N = 148) 

 

  Median IQR Median IQR 

Age (years) 59 45 - 71 62 47 - 69 

BMI (kg/m2) 29.3 25.8 - 36.1 26.5 21.9 - 33.0 

Symptom days 6 2 - 9 4 1 - 9 

PCR-Imaging Δ 3 0 - 8 0 1 - 9 

  Count  Frequency (%) Count  Frequency (%)  

Sex         

Female 35 38.5 62 48.1 

Male 56 61.5 67 51.9 

Ethnicity     

Black 49 57.0 40 37.7 

Hispanic 2 2.3 0 0 

Other 5 5.8 2 1.9 

White 30 34.9 64 60.4 

Prior Structural 
Lung disease 

32 34.8 37 28.5 

History of Cancer 9 11.9 46 33.6 

Smoking History 85 93.4 44 48.4 

Hypertension 60 65.9 64 49.2 

Diabetes 34 37.6 31 23.8 

CHF 16 17.8 27 20.8 

CKD 14 15.4 19 14.6 

Autoimmune 
disease 

14 15.4 17 13.1 

HIV 0 0 6 4.6 

SARS-CoV-2 = severe acute respiratory syndrome coronavirus2, IQR = interquartile range, BMI = body 

mass index, PCR = polymerase chain reaction, CHF = congestive heart failure, CKD = chronic kidney 

disease, HIV = human immunodeficiency virus 

 

  

                  



Table 2. Diagnostic parameters of the most accurate thresholds for inpatient outcomes 

AI Airspace Opacity 
Score ≥ 8 and 
Hospitalization (N = 
241) 

   

  Hospitalization  No Hospitalization % Hospitalized 

Opacity Score ≥8 45 28 61.6% 

Opacity Score <8 26 143 15.4% 

        

Accuracy 0.777 (0.724 - 0.829) Odds Ratio 8.8 (4.7 - 16.5) 

Sensitivity 0.634 (0.511 - 0.745) PPV 0.616 (0.505 - 0.728) 

Specificity 0.836 (0.772 - 0.888) NPV 0.846 (0.792 - 0.901) 

AI Airspace Opacity Score ≥ 9 and ICU Admission (N = 241) 

  ICU Admission No ICU Admission % ICU 

Opacity Score ≥9 18 49 26.9% 

Opacity Score <9 13 162 7.4% 

        

Accuracy 0.744 (0.689 - 0.799) Odds Ratio 4.58 (2.1 - 9.8) 

Sensitivity 0.581 (0.391 - 0.755) PPV 0.269 (0.163 - 0.375) 

Specificity 0.768 (0.705 - 0.823) NPV 0.926 (0.887 - 0.965) 

AI Airspace Opacity Score ≥ 12 and Intubation (N = 241) 

  Intubation  No Intubation % Intubation 

Opacity Score ≥12 9 28 24.3% 

Opacity Score <12 11 194 5.4% 

        

Accuracy 0.839 (0.793 - 0.885) Odds Ratio 5.67 (2.07 - 9.95) 

Sensitivity 0.450 (0.231 - 0.685) PPV 0.243 (0.105 - 0.381) 

Specificity 0.874 (0.823 - 0.915) NPV 0.946 (0.915 - 0.977) 

AI Airspace Opacity Score ≥ 13 and Mortality (N = 241) 

  Dead Alive % Mortality 

Opacity Score ≥13 4 29 12.1% 

Opacity Score <13 10 199 4.8% 

        

Accuracy 0.839 (0.793 - 0.885) Odds Ratio 2.75 (0.852 - 0.844) 

Sensitivity 0.286 (0.084 - 0.581) PPV 0.121 (0.010 - 0.233) 

Specificity 0.873 (0.822 - 0.913) NPV 0.952 (0.923 - 0.981) 

PPV = Positive predictive value, NPV = Negative predictive value 

 

 

                  


